P&IDs and Process Evolution

P&IDs and Process

P&IDs are par for the course in process engineering. Recently, I was poring over P&IDs and process planning for several projects. Each project was multinational, multicultural, and extremely complex. For one specialty chemical filtration application, part of a plant expansion in the southern United States, the engineering company is in the Southeast while the existing processes were from the Netherlands and Austria. In another project, with a similar scope, the plant expansion and the engineering company were both in the Northeast U.S., yet the current processes operate all throughout the UK.

As you can imagine, the piping and instrumentation diagrams (P&IDs) had many changes, each shown in a different color —the Christmas Trees of P&IDs.  There were extensive e-mail threads of comments and questions and, of course, questions/comments about the comments/questions. Plus, the projects required equally fun conference / video calls accounting for time zone differences, various languages and accents, and varied engineering cultures and operating philosophies. You’ve been in this situation too, I’ll bet.

The discussion, though, is invigorating. The idea exchange goes well beyond solid-liquid separation to encompass types of valves, types of pumps, where to put the pumps, how to handle the solids, operator safety, disposal, and on and on and on.  I even had a question about desalination and how to operate the DAF (Dissolved Air Flotation) units (that’s a topic for another blog).

Developing A New Process Path with P & IDs

After one of these calls, I had an “A-Ha” moment about the true value of our plentiful rounds with P&IDs and process. This is where the innovation happens. The P&IDs are idea development in action. This is where we, as I wrote in one of my earlier blogs, clear our path of unknowns.  

Anyone who’s read my blog consistently will recognize this is what is excites me about process engineering and all we do in this role. I’ve decided to take my own early 2019 advice and stretch myself in new directions with the birth of “P&ID-Perlmutter Idea Development” which you can find at perlmutter-ideadevelopment.com.

To me, these two sites work together like a candle filter functions better with the right filter sock. I’m excited to see how this idea develops, and eager to see what my readers, colleagues, and fellow bloggers will want to add and change and discuss (after all, it’s a P&IDs and process we’re talking about here).

Chemical Engineers & Our Superstitions

5069085907_c5db31a9fb_b

Superstitions surround us: Touching wood? Carrying a rabbit’s foot? Collecting lucky pennies? Not stepping on any cracks? The list goes on and on. 

On one of my many chemical filtration business trips (many people have superstitions making flights safer), I read an interesting article on superstitions in the Wall Street Journal’s (WSJ) Magazine. Six luminaries from different walks of life — photography, acting, cooking, writing, directing and music — weighed in. But, alas, there were no chemical engineers.  So, I thought I’d remedy that in a blog. 

The WSJ article featured various thoughts on superstitions. Some defined superstitions based upon religion and culture passed on from many generations. Another outlined a simple ritual such as “when hearing the title of a Scottish play, one would run outside, turn around three times, then knock on the door to come back inside the theatre.” Then, there were “routines” to keep your days identical (i.e. the same workout, the same coffee, etc.). Others talked about superstitions as an attempt at “having control of what you can control.”

However, the one overriding theme, as photographer Gregory Crewdson stated, is that a belief in superstition “comes down to order” and wanting “to clear your path of unknowns.”  

Clearing the Path for Chemical Engineers

So, how does all that relate to chemical engineering?

If you accept Crewdson’s view, all chemical engineers are superstitious. We are always trying to clear our paths of the unknown. In every chemical filtration process, it is the unknowns that give us the most headaches. Why does the pump keep plugging? Why does the filtration system not produce a clean filtrate? Why is the process not meeting the production rates?  The questions we face are endless! But our job remains the same, we must “clear our paths of the unknown.”

Regular readers will know where I’m going with this…Test! Test! Test! Testing is our way of answering questions in controlled environments. To develop a process or troubleshoot an existing one, we need to ask the correct questions, think critically, walk around the plant, etc.  

Contact me with your superstitions for solving critical filtration and drying applications.  Let’s have fun exploring what we all do in chemical filtration.  

Selecting and Designing Combination Filtration for Solid-Liquid Separation

SLS equipment
Photo by uptownguydenver on Foter.com / CC BY-NC-ND

Filtration experts, over the years, have discussed combination filtration and debated its definition.

  • In the realm of cartridge filtration, simply defined, a combination filter is one that does at least one other processing job at the same time as filtering a suspension.  For example, this could be carbon canister which removes both suspended and dissolved components.
  • In water applications, a combination filter removes bacteria, sediment, chlorine taste and odor, and scale.
  • In lubrication oil filtration, combination filtration refers to full-flow and by-pass flow filtration.
  • For small scale process filtration, combination filtration is installing bag and cartridge filtration systems in series.

There is, however, a new definition of combination filtration that transcends the standard approach and will assist process engineers with trouble shooting and idea-generation.  The approach relies upon the slurry analysis and testing to uncover the “process symptom” and then develop a process solution called “combination mechanical slurry conditioning and filtration.”

Filtration Technology in Combination

There are, without doubt, there is a lot of SLS equipment already existing in the marketplace that can be applied in combination, including the use of chemicals such as flocculants and coagulants.  However, from a practical viewpoint, let me review general operating conditions at chemical plants and illustrate creative idea-generation when examining a process problem.

In this first case, we have a high solids slurry with a wide particle size distribution.  What should you do?  My idea is to provide filtration for the slurry with a continuous technology and let the fines bleed through; capture theses fines with clarification.  Yes, more filtration but a much more reliable system.

 

filtration procedure

This new definition of combination filtration will provide process engineers a framework for idea generation when analyzing an operating bottleneck.  Complete my application data sheets for new and existing application data for filtration for solid-liquid separation. Let us start the process of finding the right SLS equipment for your business.

Being a Doer and The Blues Brothers.

Loyal followers of this blog already know some of my background and likes. Now, you get to learn that I’m a big fan of John Belushi and The Blues Brothers. I link this to my years spent living in Chicago and my Master’s Degree earned from the School of Engineering at Washington University (Wash U) in St. Louis. How are these related?

Lawyer Cash Nickerson, Wash U alumni, and author of Listening as a Martial Art, recently posted on LinkedIn about “doers, reporters, amplifiers and listening skills” in the workplace. The workplace for us could be technical sales, project engineering, process development, etc., and we’re all familiar with the need for problem solving at work.

In the case of Belushi’s Jake in The Blues Brothers, his workplace was “getting the band back together.”

Cash talks about a “reporter” as someone who tells you what is happening: the client is unhappy, the project is delayed, the specifications are wrong, etc. Basically, telling the story of “how we got here.” The “amplifier” reports but also repeats the story, even louder. They are the ones who after hearing of a crisis, scream even louder. With email, text, and social media, it’s easy to become a reporter/amplifier.

problem solving at work
Photo credit: miuenski via RemodelBlog / CC BY-NC-SA

Meanwhile, a “doer” doesn’t just bring a problem; they also present a solution or a suggested solution. The best actually solve the problem or attempt to do so before even coming to you. The “doer” doesn’t announce the problem widely (amplifying it) but rather sets up a meeting (I call these an “adjustment meeting”), organizes a conference call with the client, writes a change order, etc. The doer tries to resolve the issue and only comes to the boss if the problem remains unresolved.

John Belushi is a doer. In one of my favorite scenes in the movie Jake lies in mud in an underground tunnel with a mysterious woman shooting at him. All Jake can do to solve his problem is try to talk his way out: “Honest… I ran out of gas. I… I had a flat tire. I didn’t have enough money for cab fare. My tux didn’t come back from the cleaners. An old friend came in from out of town. Someone stole my car. There was an earthquake. A terrible flood. Locusts! IT WASN’T MY FAULT!”

I think that we’ve all been in the mud at one time in our careers. Yet, I would not suggest that this is a good approach in for problem solving at work. What you want to do is stop and think first. Am I going to be a reporter, or worse yet an amplifier? Take the time to first rehearse your approach in your head. See if you can find a way, instead, to be a doer. So much more will get done, and you’re more likely to get ahead too.

We all deal with problems in the mud every day in our jobs, let me know some ideas and examples that we can share for problem solving at work strategies. Or if you just want to share a favorite scene from The Blues Brothers, I’ll be happy to hear that too!

Process Engineering Choices

 

process engineers
Photo credit: Internet Archive Book Images via Foter.com

Have you ever heard of “analysis paralysis?” It’s a state process engineers might know well. Being confronted with so many different approaches and varied equipment available, we can be left stuck wondering what to do next.

The recent BHS newsletter looked at just this indecision from the perspective of a process engineer facing the challenges of acidic slurries and vacuum filtration.  We began by sharing the perspective of Garrett Bergquist, the BHS Process & Application Engineer, who is presenting at the AICHE annual meeting in San Francisco this month.

Garrett’s article discusses belt filter technologies, materials of construction and proper vacuum belt selection.  His focus in particular is on alternate materials available in vacuum belt filter construction. He furthered his insights with a case study addressing chemical compatibility to process 2,200 kg/h dry solids precipitated from a sulfuric acid solution.

Noting stainless and carbon steels are often incompatible with most sulfuric and hydrochloric acid concentrations, he concluded, “when it comes to dealing with hazardous slurries such as those containing sulfuric or hydrochloric acid the options should be carefully considered.”

Also in the latest A&SoF newsletter, we announce our Vacuum Belt Filter skid. This mobile skid (see the wheels?) is 0.3m2, including liquid ring vacuum pump, separator, transfer pump, instrumentation and PLC controls. Plus, its fully-wired for quick electrical hook-up.

Finally, we offered a presentation of BHS’s laboratory filtration testing capabilities. Filtration Laboratory Manager Ron Baltz’s overview of the new Charlotte facility covers all of the bases. But, if you still have questions about all our process engineers can accomplish, let me know.

 

Surfs Up to Innovation!

Innovation is all around us. We encounter its results regularly in our jobs as engineers. But, thinking about the concept more broadly for this blog, I was struck by an example from a Business Week article on Kelly Slater.

entrepreneurship and innovation
Image source: BusinessWeek

Now, I’m not a surfer. I swim, bike and run (sometimes all together in mini-triathlons) but even I’d heard of Slater, whom the magazine described as “the world’s best and best-known surfer.” So I had to wonder what he was doing in a magazine devoted to business, entrepreneurship and innovation.

Well, it turns out Slater accomplished the ultimate goal of the surfing community. His quest to innovate led him to make the “near perfect man-made wave.” You can see video of him surfing this feat of modern ingenuity on the BusinessWeek site.

What struck me in the article was the familiarity of his process. It started with the concept to make a perfect wave, 7 – 8 feet, with a much coveted “right break” (why this is so special is unclear from the article, and a cursory Internet search for the answer didn’t help me differentiate why the right break is better than any other kind).

From concept, Slater and his team endured a long phase of expensive and speculative engineering involving prototypes and yes, research labs, to get it right.

Then, he finally experienced the excitement of getting it right — and promptly put it on Instagram.

At every step of the way we could relate to the struggle for him and his team. Even down to the elation and social media sharing of the success — I’ve seen many of my customers’  videos of their products “getting it right.” Although, they’re typically wearing more than swimsuits!

With the case of the man-made wave innovation, as usual, you have the supporters and the nay-sayers. The nay-sayers believe that mechanical waves take away from the exotic nature of surfing. Supporters believe this could open up the sport to resorts, competition in the Olympic games, and expand the sport to places in the world where oceans don’t exist.

All in all, this is not so different than developing a new chemical application. Having pursued his goal through creation, evolution, and refining, Slater has now found an investor to fund and grow the technology. You’ll notice this blog often shares samples of entrepreneurship and innovation. It’s exciting to see innovative minds succeed — whether it’s chemicals or “cowabunga dude” success changing the face of surfing.

 

 

7 Key Steps in Petrochemical Safety

petrochemical safety
The Union Carbide factory now lies abandoned in Bhopal. Image source.

Attending the PetChem Technology Forum in Houston I learned from engineering, operating company, supplier and consultant industry experts. I was fortunate enough to be presenting on Filtration Technology for Removing Solid Contaminant Fines from Water Scrubbing, Clarifier Effluent and Grey Water. I discussed technologies, applications, case histories and troubleshooting in petrochemical safety.

Another of the presentations addressed safety and conducting safety audits. We all think we know about safety. Sometimes we’re overconfident — as when I told my 88 year-old father how to safely climb a ladder, and he proceeded not to talk with me for a day (but that’s another story).

In Houston I was learning from Robert J. Weber, the President/CEO and founder of PSRG, a global provider of process safety, risk management, process plant reliability, and comprehensive HSSE services for the hydrocarbon and chemical process industries.

Robert first covered lessons learned from industry incidents such as:

  • a cyclohexane release and explosion that killed 28 in Flixborough, UK
  • a loss of containment in a local Mexico City sewer system that led to over 650 fatalities
  • the “world’s worst industrial disaster” in Bhopal, India when a Union Carbide methyl isocyanate tank ruptured.

    industrial safety
    Industrial accident in 1976 Italy

He then related these to elements of process safety (as seen in this presentation slide):

petrochemical safety

Robert discussed what each company can do to improve safety including establishing a culture of safety (leadership and competency). He suggested clearly defined expectations and accountability along with Key Performance Indicators. Finally, he stressed continuous improvement and community outreach.

7 Key Steps in Petrochemical Safety

Over the course of the presentation and panel questions seven key steps in safety management were identified:

  1. Assign personnel for accountability
  2. Adopt a personalized company philosophy
  3. Learn about process safety
  4. Incorporate process safety into the business drivers
  5. Set achievable goals
  6. Track performance
  7. Revisit and improve on a continuous basis

This presentation was a great reminder of how essential it is to always be thinking about safety. As Sargent Phil Esterhaus of Hill Street Blues would say:

Safety in Engineering

Importance of Good Professional Sense

Chemical Process Industry engineers don’t encounter ethical situations every day, fortunately. Yet, when we do, the decision-making is heavily weighted by our awareness of the importance of the potential safety, environmental and quality-control hazards associated with what we do.

chemical process industryPhoto credit: CameliaTWU via Decorators Guru / CC BY-NC-ND

Chemical Engineering tackled the topic of Engineering Ethics IQ in a special discussion last year. They also sought the opinions and comments of readers regarding specific hypothetical cases in a survey aiming at discussing ethically charged situations.

The survey:

  • Questioned the ethics of using a miniscule amount of a poisonous additive to a product.
  • Considered whether or not to continue testing with a critical gasket potentially leaking.
  • Addressed proper reporting and handling of waste.
  • Covered insider information and vendor incentives.
  • Examined acknowledging responsibility.

I’ll be interested to see the magazine’s survey results. In the meantime, I was inspired to look back at the NSPE Code of Ethics that notes, “Engineering has a direct and vital impact on the quality of life for all people. Accordingly, the services provided by engineers require honesty, impartiality, fairness, and equity, and must be dedicated to the protection of the public health, safety, and welfare.” The AIChE, too, strives to uphold and advance ethical thinking, reminding its members to use “their knowledge and skill for the enhancement of human welfare.”

My thinking on this important topic was jogged on the golf course, as I mentioned previously, when I was thinking of the honesty of Brian Davis on the PGA Tour. Revisiting the coverage of that event for this blog, I came across an insightful New York Times opinion piece pointing out that Davis’s behavior highlighted “the refreshing contrast between golf and other sports.”

The columnist observed, “In other sports, players unabashedly claim to have (take your pick) made the catch, avoided the tag, cleanly blocked the shot, had both feet inbounds, etc., only to be overruled by officials or replay cameras.” Whereas, in 1925 golfer Bobby Jones shrugged off praise of his calling a similar penalty on himself by saying, “You may as well praise a man for not robbing a bank.”

This is how we, as chemical process engineers, ought to think as well. That ethical action is not a choice, but the only way to respond. Pressures at work — be they related to time, profitability, or reputation — cannot diminish the fact that ethical decision-making is always good professional sense.

Ethical Engineers are Prepared

On the golf course recently, I was reminded of Brian Davis. Do you remember? In 2010, he called a two-stroke penalty on himself in tournament play. His violation, nudging a reed aside on the 18th, cost him $411,000 as he ultimately finished second to Jim Furyk.

process engineer problem solving
Photo credit: Tord Sollie via Foter.com / CC BY-NC-ND

Now, I haven’t come close to winning a major tournament — although I did earn “closest to the hole” in a Gas Processors Tournament in Madrid, Spain. Nevertheless, when I hit the links I assiduously keep track of my strokes — all of them — because it’s the right thing to do. Somehow this got me thinking of how doing the right thing in chemical process engineering can, in fact, prove as costly as Davis’s honorable action. Yet choosing the other, less-ethical path could cost human lives from say bacterial contamination or ignored safety procedures.

Karl Stephan, writing in Chemical Engineering, acknowledged sound ethics in our field demands “a large dose of technical know-how” as well as a sound ethical foundation when confronting “ethically charged questions.”

Texas State University’s Stephan may have been a Boy Scout as his suggestion for engineers is to “be prepared” to identify ethical problems with seven steps to better navigate the situation. I paraphrase here:

  1. Know what you believe. Ask yourself in advance what kind of situations you would be willing to risk your chemical process engineer reputation or your job for.
  2. Recognize ethical problems. Take stock of your individual role and what could go wrong, go unreported, or cause harm to better understand the scope of your responsibility.
  3. Identify stakeholders. Having identified possible ethical problems, consider everyone who might be affected (whether if something is done or if a problem is ignored).
  4. Analyze interests. Take the time to anticipate each of those stakeholders interest in the various outcomes of an ethical decision.
  5. Examine alternatives. Weigh the possibilities such as doing nothing, doing nothing at least for a time, or acting immediately to determine reasonable courses of action.
  6. Execute decision. With all the thinking you’ve been doing, you should be in a position to implement a decision – even a difficult one.
  7. Document everything. Try and collect a paper trail of the entire process as soon as you are aware of an ethical issue. You will be better able to recall details if called upon if you have the complete, accurate information.

What I appreciate about Stephan’s approach is that he takes the abstraction of ethics and turns it into a process. That’s what I call knowing your audience. Ethics is anathema to engineers in a way. Not because we want to do whatever we want, without caring a whit for the consequences, but because it is not a hard science. Many of us enjoy the one right answer that engineering often represents, whereas ethics is all about ambiguity.

Ultimately, though, there can be no ambiguity in handling ethical situations in chemical process engineering. We must implement clear rules about what is ethical and actively seek to do the right thing — as Davis did. This is the only foundation upon which I will stand for generating revenue and building my and my company’s reputations.

Pertaining to Particle Size Analysis Methods

 

Particle size analysis methods
Photo credit: NASA Johnson via Remodel / CC BY-NC

 

When I say “Particle Size,” you say “Analysis.”

When I say “Particle Size,” you say _________.

Who says we can’t have fun with particle size analysis methods? I know BHS-Sonthofen’s latest A&SoF newsletter has some interesting reads on the topic. Focusing on particle size and shape and their impacts on solid-liquid separation, we share some current industry insights on the topic.

Drawing on resources from Mettler-Toledo and Micromeritics, we hope to prompt your thinking on different ways of approaching particle analysis. The permutations are endless of course as process engineers must address off-line and in-processes and how the particle size and shape impacts the filtration system designed to handle the specific solids.

Mettler-Toledo examines scientists combining offline particle size analyzers with in-process particle characterization instruments to optimize and improve processes.  Their white paper illustrates how this can help:

  • Obtain detailed process understanding by directly measuring changes to particle size and count as process parameters vary
  • Determine operating conditions required to deliver fit-for-purpose particles on a consistent basis
  • Monitor and correct process deviations during continuous or batch production
  • Avoid time delays and errors associated with sampling, preparation and offline analysis

Micromeritics, meanwhile, reminds us of the challenges of equivalent particle analysis with irregularly shaped particles and different measurement techniques. They note:

“Understanding what each particle size technique actually measures, how it performs the measurement, and how it transforms the quantity measured into equivalent spherical diameters are crucial when selecting the most appropriate particle sizing technique for your sample or application.”

Of course, I can’t help but mention my own discussion of particle size analysis methods in chapter 6 of my Guide to Solid-Liquid Filtration. In keeping with my Sherlock Holmes-ian bent, I illustrate how the systems approach to process filtration and “not jumping to conclusions” should be the guiding principles when we troubleshoot issues of particle size distribution (PSD) changing from pilot to production scale and even during the production operation.

Want to learn more about how the Charlotte office of BHS sleuths out particle size solutions? Reach out and let me know. But when I holler, “particle size,” expect me to be waiting for you to come right back with “analysis!”