Theory of Filtration and Theory of Creativity     

pexels-photo-3631430
Photo by Fiona Art on Pexels.com

Having been in the solid-liquid filtration, centrifugation, and drying marketplace since 1982, I have long said filtration is both a science and an art. I’ve witnessed the overlap of theory of filtration with theory of creativity. The practical and creative together make what we do so exciting. 

I entered the filtration business with Pall Corporation after five years with  the USEPA and receiving my MS in Environmental Science from Washington University in St. Louis. With Pall Corporation, I learned a lot about the science and art of filtration, marketing and sales, R & D, communication, and processes. It was during this time that I realized the creativity in the filtration market; every process, telephone call, e-mail was another challenge to solve a problem. 

Theory of Filtration

The theory of cake building filtration is based on Darcy’s law, describing the flow of fluids through porous materials. A practical equation was developed with a few assumptions:  

  • the build cake is (almost) incompressible
  • the pressure during the cake building is (almost) constant
  • the filtrate is clear (= (almost)) and all solids from the suspension do end up in the cake
  • the resistance created by the filter media is negligible compared with the cake resistance

 Experiences have shown that the following equation can be used:

theory of filtration

This equation describes most cases of everyday filtration testing. The most interesting parameter is alpha, the sum of all “unknowns” such as particle size distribution (PSD), porosity, solids shape and size, etc. Hence, the creativity.

Theory of Creativity

Robert J. Sternberg, Professor of Human Development at Cornell University, has developed two theories of creativity: The Investment Theory and the Propulsion Theory. What follows is a summary of Robert’s theories.

The investment theory of creativity holds that creativity is in large part a decision. Creative people generate ideas that are viewed as novel and perhaps slightly ridiculous. Creative individuals, by their nature, tend to defy the crowd. They resist merely thinking or doing what others are thinking or doing. The greatest obstacle to creativity, therefore, often is not exactly strictures from others, but rather the limitations one places on one’s own thinking.

People are not born creative or uncreative. Rather, they develop a set of attitudes toward life that characterize those who are willing to go their own way. Examples of such attitudes toward life are willingness to (a) redefine problems in novel ways, (b) take sensible risks,  (c) “sell” ideas that others might not initially accept, (d) persevere in the face of obstacles, and (e) examine whether their own preconceptions are interfering with their creative process. Such attitudes are teachable and can be ingrained in students through instruction that encourages students to think for themselves. Creativity comprises several different aspects: (a) abilities, (b) knowledge, (c) styles of thinking, (d) personality attributes, (e) motivation, and especially intrinsic motivation, and (f) environment.  

Robert continues with his propulsion theory, as follows:

Some kinds of creative contributions move forward in an already existing direction. The most basic kind of creativity is (1) conceptual replication, which is a product that basically repeats what has been done before with slight variation. (2) redefinition is a reconceptualization of a creative idea, so that an idea that was originally proposed for one purpose subsequently is used for another purpose. (3) forward incrementation is the next step in a usually long chain of ideas.  (4) advance forward incrementation is a next step that is a large leap beyond the last idea.  

Other kinds of creative contributions take a new direction from previous work. (5) redirection is a contribution that moves a field in a direction different from that in which it has been moving.  (6) regressive redirection is a contribution that takes a field in a new direction, but a direction that has been proposed earlier and perhaps discarded. (7) re-initiation is a contribution that not only moves a field in a new direction but also essentially starts a field over. Finally, (8) synthesis brings together previously divergent lines of thought, such as the invention of the seaplane.

Filtration & Creativity

Let me reiterate one of Sternberg’s observations: “The greatest obstacle to creativity, therefore, often is not exactly strictures from others, but rather the limitations one places on one’s own thinking.” I’ve written in the past about limitations that hinder our approaches to filtration. We can’t travel the same paths over and over again. We need to be willing to take a fresh look at each situation, think critically, test and test again, and innovate — with creativity.

Goodbye 2019, Hello 2020!

man with fireworks
Photo by Rakicevic Nenad on Pexels.com

A new year is a great time for a shift in direction. This blog tries to be different each time. I cover topics ranging from innovation to technical leadership. I’m always looking for fresh ways of doing things in our industry, in process engineering and business development. And I look for new ways to convey these ideas to the marketplace. 

In 2019, I talked about clarification technologies, types of engineers, innovation risk, and the creativity of the octopus. In 2020, look for blogs on orangutans, moonshots, and agile methodology and engineering. But for right now, as we look forward to celebrating a new year, here are some ideas to help you try a new highway in 2020. 

We have a chance for the next decade to be a new roaring ‘20s. Don’t get stuck taking the same routes you’ve always been traveling. Try these approaches for a novel approach to 2020 and beyond:

  • Adopt a positive mindset and see the opportunities

Its easy to get bogged down when a process is not working or a project is going sideways. Learn to accept – everything from setbacks through to challenges. Turn these diversions from your plan or expectations into opportunities.  

  • Be brave and stick to your guns

Maybe you are the innovator with a new idea of how things should be done. If you are sure about the design or process change, then go ahead and make the change.  Remember, to test first and to have all of your facts in place to show technical leadership.

  • Make room for your own creative projects

No matter your work focus, set aside time for your own projects.  Take one hour each morning (for me after yoga) and before you check your e-mails for your personal projects; this will pay off greatly in the long term, on many levels.

  • Don’t let the pressure or threat of failure or competition hold you back 

Be confident in your work and don’t be afraid to try something different. We always learn from our mistakes, and from getting out there and gathering more information. With greater knowledge comes greater confidence.

  • Be authentic and believe in yourself

Use more of your judgement and less of other’s opinions. As I have written in the past,    learning never ends. And if you try to be what other people want of you, instead of being authentic, it can have negative impacts both on your professional life and personal well-being.

  • Don’t ignore your gut but tread carefully

Decision making is never easy. Read more about troubleshooting and how to make better decisions in my 2017 blog.

  • Accept that personal progress can take time but perseverance counts

Any goal takes time.  As loyal readers already know, I sometimes mention my yoga practice, which includes headstands, shoulder stands, tripod stands, etc. These did not happen overnight. But by persevering and keeping an eye on small moments of personal progress along the way, I was able to stick with it and see greater success long-term.

Let’s get ready for 2020. I’ll continue working on this blog and providing new BHS and AVA technical and innovative insights on, Perlmutter & Idea Development.  As you start anew in this fresh decade, I hope you’ll keep reading my blog and my LinkedIn posts. And don’t hesitate to let me know your ideas about technical leadership and other areas of interest for this blog!

Innovation Risks & Two Success Stories    

innovation risks
Image source: Business Week

One key element of innovation success is taking risks. I’ve recently read two articles where major breakthroughs in human health started with innovation risks. The two stories are a great reminder that we need to step up to challenges and look at the world anew to innovate!

In our first case, from Business Week, a chemical engineer named David Whitlock became interested in biology after a tubby date asked him why her horse rolls in the dirt, even in the cool springtime months before the biting insects have even hatched. Whitlock was curious too. So he started reading scientific papers and came across a “bacteria, found in soil and other natural environments, that derives energy from ammonia rather than organic matter.”

Whitlock’s took risks for his research. In 2009, he moved into his white Dodge Grand Caravan to study the bacteria culled from soil that he theorized could improve skin disorders, hypertension, and other health problems. And even he’ll admit there were some times he really smelled while experimenting with his soil-based concoctions on himself.  

Still, his innovation risks led to the ground-breaking discovery that these ammonia-oxidizing bacteria (AOB) can transform sweat into something more useful. His company now generates almost $2.6 million revenue in cosmetic sprays, shampoos and moisturizers. Microbiomes, “commensal, symbiotic and pathogenic microorganisms that literally share our body space” are now the focus of many new products. The third annual Skin Microbiome Congress, for instance, welcomed established brands such as BASF, Bayer, Coty, Merck, Nestlé, L’Occitane, L’Oréal, and Unilever.

The article is a great example of a single researcher’s drive and creativity. He didn’t shy away from the tough stuff in pursuit of innovation.

An Eye-Opening Innovation Risk 

A second recent Business Week article is further evidence that it pays to swing for the fences. The article is about manufacturer W.L. Gore & Associates Inc., best known for the waterproof membrane Gore-Tex, and how its willingness to “take more chances” has led to its polymers being used in corneal implants.  

An obsession with a polymer called polytetrafluoroethylene, PTFE, led William Gore to his discovery of the lighter and yet stronger expanded ePTFE. The polymer is now not only used in waterproof wear, but also in air purifiers, dental floss, high-tension ropes, and stents and surgical patches.

Yet the company was stagnating as competitors introduced alternatives. Gore needed to get ambitious again. When Anuraag Singh encountered Gopalan Balaji in a lunch line at a corporate event, the two natives of India, where corneal blindness is a major issue, asked whether they couldn’t do more with their company’s polymer.

Innovation risks
Image source

Enlisting others, their team sought to modify the polymer to be transparent and light bending in the same way that the human cornea tissue is in our eyes. Their first attempts fizzled and were shelved until a new CEO came to Gore and encouraged innovation risks anew.

With new seed funding to learn more from ophthalmologists, rethink the design, and reconsider their material choices, their team came up with a new prototype. As a sidebar, I have to applaud the hands-on discovery involved along the way: 

“We love putting prototypes and materials on the table,” Singh told Business Week.  “A typical meeting would involve the surgeon and the engineers ‘all kind of hunched over: feeling, touching, poking at things.’”

The result? An artificial cornea that may help to solve a pressing human health problem in developing countries. The plan is for continued research and testing the first implant in humans in 2020 with the goal of bringing it to market in 2026. With cornea tissue damage the 5th leading cause of blindness this innovation risk could have a happy ending.

Ultimately, these two examples are reminders that we need to look around, ask questions, and listen to our communities to come up with ideas. Then we need to take those necessary innovation risks!  

Creativity: Lessons Learned from Octopuses

creativity
Image source

So, here we go again…intertwining two seemingly unrelated topics — creativity and eight-limbed ocean dwellers — in one interesting blog.

Over the years, as my readers know, I’ve enjoyed discussing fresh sources of innovation. Today, it’s the octopus. 

First some technical details: Octopuses have eight arms, round bodies and bulging bilateral eyes. The 300 species of octopuses live in all the world’s oceans, but prefer warmer, tropical waters. They typically only live between 1 and 2 years, but during that time they like to play. 

That leads us to the good stuff: These creative, intelligent creatures can problem solve and are masterful mimics. Some species can even change the texture of their skin to better hunt and evade predators. Plus, they all lack a rigid skeleton, which lets them contort themselves into amazing shapes. 

Check out the mimic octopus:

creativity
Click here to see the video!

Yet how does a creature that can only see in black and white make these changes? They control special cells just under their skin’s surface — chromatophores — which hold pigment and  change color within milliseconds. Controlled like muscles, these cells can help many octopuses “see” with their arms and learn the patterns, colors, and textures of other animals they want to imitate.  

Sy Montgomery, author of The Soul of an Octopus shares, “three-fifths of an octopus’ neurons are not in their brain, but in their arms,” which “suggests that each arm has a mind of its own”. These arms have sensory capabilities (smell and taste) as well as reach, and can even continue to grasp if severed from the body.

Wile. E. Octopus Creativity

The octopus is a living example of the sentiment in my first blog of 2019, Becoming Uncomfortable. The octopus is always exposing itself to new environments and facing predators.  With creativity and intelligent problem-solving it succeeds. Just as humans need to put themselves out there and expose themselves to new backgrounds, experiences, and more. We can’t blend in like the octopus, so we have to become uncomfortable, but it’s worth it. 

There’s also something we can gain from thinking about the octopuses seeing with their arms. Think how humans might engage differently if we could see with our arms?  We’d be sure to look at tasks in a different manner when thinking critically about process. 

Finally, let’s consider what we’d do with better camouflage. I don’t mean you should wear a disguise at work! Still, what if you were to try to camouflage your thinking. You too can be a masterful mimic to problem solve or put yourself in the shoes of the client: “I am not the sales engineer but the lead process engineer” or “I am the Director of Capital Purchasing” or “I am the entrepreneur who needs advice for a process solution while spending my own money.” 

We’re still stuck with bones, so we can’t morph into all the different shapes this amazing creature can manage. A 600-pound octopus can get through a pathway the diameter of a quarter! Yet, the octopus’s sense of adventure also underlines my suggestion to get out into the world and see what’s going on for a new perspective on process solutions and life in general.

I hope you’ll have some fun with this and think about the octopus next time you want to be creative!

Changing it Up with Mixer-Dryer-Reactor Acquisition

 

filtration technology
Image source

Starting off 2019, I talked about push pushing ourselves personally and professionally to embrace change. Well, I’m a man of my word, and I’m proud to announce a big change in filtration technology at BHS-Sonthofen GmbH. We’re looking at 2019 as a year of growth, starting with the acquisition of the internationally active AVA-GmbH technology company.

AVA, based just outside of Munich, Germany, has 25+ years under its belt producing innovative machines and efficient processes for any industry. They tackle mixing, drying, reacting, granulating, sterilizing, evaporating, humidifying, and homogenizing to combine engineering expertise and project management know-how to provide “tailor-made solutions from a single source.”

AVA’s product portfolio is a perfect fit with BHS. Having already cooperated with them on joint projects in the past, we can be sure that our company is only strengthened by this move.

In addressing the sale, Dennis Kemmann, Managing Director of BHS-Sonthofen GmbH was enthusiastic about the opportunity to combine our products to have an “even more comprehensive offering in all of our chemical, pharmaceutical and other markets.” 

Expanding Process Filtration Technology Technologies

BHS’s latest newsletter looks at the pairing in more particular applications. You can read more about selecting AVA Vertical or Horizontal Mixer-Dryers for Batch of or Continuous Operations. The goal is a streamlined approach handling as many processes as possible in one unit to curtail investment and process costs. 

Three of AVA’s multipurpose process machines are presented as possibilities to cover the vast majority of the application spectrum of the powder and granule processing industry:

  • AVA Vertical mixer-dryers for batch operation
  • AVA Horizontal mixer-dryers for batch operation
  • AVA Horizontal mixer-dryers for continuous operation

The newsletter also mentions the AVA test center in Germany, which allows customers to scale up from 15 – 90 liter batch mixer-dryer to full scale batch and continuous operations with full scale-up reports and drying curves issued after testing. The US test center in Charlotte, North Carolina will be completed in 4Q, 2019.

Ultimately, the AVA acquisition is good news for current and prospective clients. This change means more innovative process engineering solutions as well as an expanded team to support our customers. The combination of BHS and AVA systems will provide important process benefits for turnkey projects for our clients worldwide. Let me know what we can do for you!

6 Global Trends Driving Filtration and Separation Technology Innovation

filtration and separation

This guest blog by Molly Henry of the American Filtration and Separations Society (AFS), appeared on their site (with my editorial assistance). For those who missed the original, I thought it was information worth sharing again here (in edited form) regarding the global filtration market.

As our population grows and urbanizes, so does our need for clean energy, pure water, increased food supplies, advanced medical care, and improved digital devices and processing power. Filtration and separation suppliers, as an enabling technology to most industries, must continually evolve to increase capacity and improve filtration performance. This blog examines the trends necessitating innovation. 

Population growth will drive demand, which will require increased production and manufacturing efficiency for industrial products, foods and beverages, transportation, and infrastructure. All of which means a greater need for filtration and separation technology.

Rapid urbanization on a global scale requires new and improved infrastructure, including water, power, communications and transportation; all of which require filtration.

Disruptive digital technology changes have dramatically improved computer processing for several decades, and trends call for this to continue. As computer circuits have grown smaller and smaller while increasing in processing power, filtration and separation technologies have also become increasingly more sophisticated.

Natural resource scarcity and climate change will make it increasingly difficult to supply an ever-growing population with clean water. This will drive greater use of desalination technologies. Recycling and reusing of wastewater on a consumer, commercial and industrial scale will become the norm. Filtration and separation technology make all these processes possible.

Transformative advances in healthcare will allow people to live longer, healthier, and more productive lives. A part of this process will be advances in diagnostic and drug therapies, which utilize filtration and separation technologies. At the same time, a focus on a cleaner environment and all natural and pure consumables, will see more industries utilizing filtration and separation rather than chemical technologies to make products safe and pure.

The race to zero emissions and zero discharge for industrial manufacturing, public utilities, automotive and aerospace will be a technology challenge on many fronts. Filtration and separation are among the major enabling technologies for this purify, recycle, and reuse process.

Whatever role you play, keeping an eye on these megatrends will serve you and your constituents well in the quest for long-term growth and value creation in the global filtration market. 

 

Innovation Grown from Oranges

sustainable innovation
Photo credit: photoschafl via Foter.com / CC BY-NC-ND

I have written over the years about sustainability; you may remember Ford & Jose Cuervo. Today, I’m writing about a new idea for sustainable innovation grown from the rinds and seeds of Sicily’s most famous citrus fruit — the orange.

The orange, which Sicily harvests several hundred thousand tons each year, is being used in a wide range of greener and healthier business initiatives.

The innovation is as impressive as the filtration technology used to give consumers the pulp-free OJ they drink at breakfast on a given morning!

Oranges & Textiles

In 2011, Adriana Santonocito was a design student in Milan and had an idea to make sustainable textiles from Sicilian oranges. People already knew how to extract cellulose from orange rinds, but Adriana developed a process to make fiber which could be blended and the color-dyed with other textiles such as cotton or polyester. She and her classmate Enrica Arena founded Orange Fiber in 2014 and are now selling the silk-like material to the famous Italian fashion designer Salvatore Ferragamo. 

sustainable innovation
Source: Ferragamo

 

What else from the oranges?

They are also making baked goods healthier, and stay fresher, thanks to a new procedure which transforms them into an innovative fat-free flour /citrus paste. Pastazzo is flour made from the orange rinds, seeds and part of the pulp not used for juice. The “brioche” from this flour has the same taste and look of brioche made with butter/fats/oils but much healthier.

sustainable innovation
Source: La Sicilia

Although we’ve yet to be employed working with oranges, BHS has applied its leadership  in sustainability to feedstocks and applications including:

  • Corn cobs and stovers
  • Wood chips
  • Bagasse / Sugar cane
  • Dairy waste and chicken renderings
  • Algae and microbial for PHA
  • Fish Oils
  • Biocatalysts

I’d be happy to tell you more about our technology for filtration, cake washing and drying of these natural products with the BHS vacuum belt filter and rotary pressure filter.

Or, let us know your feedstocks and we can brainstorm new ideas for sustainable innovation. In the meantime, be aware you may be wearing something that you can eat!

4 Key Differences between Filtration and Centrifugation

I’m always looking to collaborate and explore ideas with others in our filtration technology business. Happily, director of Oriental Manufacturers Jigar Patel, has offered this guest blog discussing differences between filtration and liquid solid centrifugation. I hope you enjoy Patel’s perspective:

liquid solid centrifugation
Photo by gemmerich on Foter.com / CC BY-SA

Filtration and centrifugation are two distinct separation techniques used for isolating the required components from the mixture. The major difference between the techniques is the nature of the force employed and the separation method used. While filtration uses a sieve or filter media to strain undesired constituents, centrifugation leverages the power of the centrifugal force for the separation.

What is Filtration?

Filtration is a physical separation technique, by pressure, vacuum or gravity, used for segregating one or more components from a mixture for different applications. Depending on the application, the process may employ one or multiple metal perforated layers or filter mesh for solid-liquid separation. 

What is Centrifugation? 

Centrifugation is a process that employs a centrifugal force to separate the elements of the liquid slurry.  The remaining liquid (supernatant) is then transferred from the centrifuge tube or removed without disturbing the precipitate. The precipitating particles left behind depend on the speed of the machine, the shape and size of the particles and their volume, viscosity, and density.

4 Major Differences between Filtration and Centrifugation

#1 Nature of Operation 

  • Filtration 

Large particles in a mixture are unable to pass through the perforated layers of the filter. Yet fluids and small particles easily pass through the filter mesh under the pressure, vacuum, or gravitational force. 

  • Liquid Solid Centrifugation 

The centrifugal machine forces the heavier solids to the bottom creating a firm cake. The lighter mixture that stays above the cake is then decanted. 

#2 Separation Techniques

  • Filtration 

Filtration uses different techniques depending on the expected outcome which can be classified as pressure, vacuum, or gravitational.

  • Centrifugation 

Centrifugation techniques can be classified as micro-centrifuges, high-speed centrifuges and ultra-centrifugations. Microcentrifuge is typically used for research studies that require the processing of biological molecules in very small volumes. High-speed centrifugal machines are designed to handle bigger batches and are mainly used for processing industrial mixtures on a large scale. The ultra-centrifugation technique is used to study the properties of biological particles.

#3 Function 

  • Filtration 

The main function of filtration is getting the desired output by eliminating impurities from any given liquid or isolating solids from a mixture. 

  • Centrifugation 

The main purpose of centrifugation is fast, efficient separation of solids from a liquid solution or slurry.

#4 Efficiency 

  • Filtration 

Simple filtration techniques take time separating the desired materials, which makes the separation method less efficient. 

  • Centrifugation 

Centrifugation techniques employ machines that run with the aid of power, so the separation method is faster and more efficient. 

Both filtration and centrifugation are solid-liquid separation techniques that use different equipment and have different applications.

My two cents: Deciding which one is best suited to your process will take work. No matter the process in question, engineers are well served by taking the time to gather the information, make their own comparisons, and then develop a process solution.

Thanks to Jigar Patel. The director of Oriental Manufacturers believes in the power of good functional designs and their ability to boost productivity and drive growth. Fueled by his passion for innovation and all things EPC, Jigar writes on topics related to process plant equipments, process machinery production, turnkey solutions, best industry practices, liquid solid centrifugation, and his personal insights!‌

Keep the sharing going — let me know what you want to write about in this spot next!

Chemical Process Optimization needs Out of the Box Thinking

chemical process optimization
A continuous vacuum belt filter with 9.0-m2 filter area.

Loyal readers of this blog know how much I value innovation and creativity. So, you can’t be surprised that I want to share with you a chemical process optimization success story. We partnered with a client to develop an optimized filtration process for a zinc oxide product.

As discussed in a coauthored article for Chemical Processing, Madison Industries and BHS-Sonthofen Inc. worked together on laboratory and field pilot testing. Engineers from both firms showed creativity and “outside-the-box” thinking in looking at the process from new vantage points in their quest to find a better option than the installed batch filter press.

Our efforts led to the selection of continuous vacuum filtration. The continuous filter, which was installed in 2016, provides maximum filtration efficiency and improves product quality while increasing yield and reducing operating and maintenance costs.

chemical process optimization
Figure 1. Technology, based on fixed vacuum trays, features step-wise movement of filter media.

Case Background

Madison Industries, based in Old Bridge, N.J., supplies copper and zinc compounds such as copper sulfate, copper carbonate, zinc sulfate, zinc chloride, zinc orthophosphate and phosphoric acid as well as other chemical products containing copper and zinc. Applications include animal feed, water treatment, dairy farming, food and pharmaceutical processing, and pool and wood preservative chemicals, among others.

The Madison facility was using a plate-and-frame filter press to filter a zinc oxide slurry made from a mix of various zinc feedstocks. The solids were mixed with water to form a slurry of 20% solids and then filtered. The cake was bagged in 2,000-lb totes, moved to another area of the plant and reslurried in sulfuric acid for further processing.

Madison wanted to expand production and replace the present labor-intensive process with a continuous operation — this led to chemical process optimization.

Crucial Tests

BHS process engineers began laboratory evaluation of the process. Madison was open to all ideas and formed a team to brainstorm different approaches.

BHS conducted several weeks of testing and evaluated both pressure and vacuum filtration based upon the specific characteristics of the solids and slurries. The testing led to the following observations:

• Filtrate clarity: The most-appropriate filter cloth is a double-weave 12-micron polypropylene.
• Filtration rate: Vacuum filtration produced the maximum filtration flux rate at a cake thickness of 6 mm.
• Cake washing: Maximum displacement washing was achieved with wash ratios of 2.6:1.
• Cake moisture: Although not a critical parameter because the cake is reslurried, cake moisture is approximately 35%.

Based on its creative testing, BHS’s process engineers recommended continuous-indexing vacuum filtration as the optimum option.

Why Continuous Indexing

The BHS continuous-indexing vacuum belt filter provides for vacuum filtration, cake washing, pressing and drying of high solids slurries. The technology is based upon fixed vacuum trays, a continuously feeding slurry system and indexing or step-wise movement of the filter media (see Figure 1). In practical terms, the belt filter operates similarly to a series of Buchner funnels.

At each indexed belt position, washing and drying efficiencies are maximized with the stopped belt and the mechanism of plug flow for gases and liquids. Cake pressing and squeezing further enhance drying. Finally, the fixed trays allow for the mother liquor and the wash filtrates to be recovered individually and recirculated/recovered/reused for a more efficient operation. The design also can integrate steaming as well as counter-current washing.

Successful Switch

Madison and BHS installed the vacuum belt filter in 2016. The unit has met all product quality specifications. Madison has realized a 50% savings in wash liquids per batch as well as a reduction in labor and operating costs because the vacuum belt filter operation is fully automatic. Since the installation, Madison has optimized the operation, improving yields and minimizing costs.

The Madison and BHS collaboration illustrates a successful relationship between client and technology supplier. The BHS approach of lab and pilot testing, coupled with idea-generation, fosters identifying the optimal option for critical and difficult solid/liquid separations.

Lessons Learned from Nathan’s

“You can take the boy out of Brooklyn, but you can’t take Brooklyn out of the boy.”

Business Innovation
Photo credit: drpavloff via Foter.com / CC BY-ND

Growing up in Brooklyn, I could bicycle about 5 miles to the ocean and Coney Island. I would always stop at Nathan’s Famous. The stop was always for a hot dog, some fries, a Coke, and then a day on the beach. For those who do not know, Nathan’s has sold more than 500 million (all-beef) hot dogs since its inception; it’s brand of hotdogs are now available at more than 53,000 outlets in all 50 states and 10 foreign countries.

I may not be one of the celebrity loyalists — those included performers such as Cary Grant, Barbara Streisand, gangsters Al Capone, Scarface, Bugsy Siegel, and politicians Bernie Sanders, President Donald Trump… But how does this memory relate to a business innovation blog?

Lessons Learned from Nathan’s

Nathan Handwerker, an Eastern European Jewish immigrant arrived at Ellis Island speaking not a word of English, unable to read or write, and with twenty-five dollars hidden in his shoes. He had a simple goal: work hard, remain fiercely loyal to what matters most, customers and employees, and stay focused on what you know best. Nathan’s began in 1916 and recently celebrated its 100th anniversary. The Coney Island location is now home, of course, to the 4th of July hot-dog eating contest.

Whether or not you’re dealing with hotdogs, though, we can all learn from Nathan’s. First, stay loyal. This cuts across all aspects of work and family. BHS is over 400 years old, so we have been around a long time. But staying loyal to your business, process, technology or whatever you are engaged with is critical to success.

Nathan’s always focused on “quality food at a fair price” to “bring the customers back.” Nathan personally checked every hot dog that came into the restaurant as well as oil temperature for the fries and grill temperature. As a technology supplier, quality at a fair price is what we do. On the operations side, providing quality chemicals, pharmaceuticals, etc., is the key to survival.

Initially Nathan’s sold hot dogs for 10 cents, the same price as the popular Coney Island outpost Feltman’s beer garden. Then, the enterprising young entrepreneur, after netting a mere $60 in his first days of business, decided to lower his prices to 5 cents. With higher volume his next week’s receipts totaled $260. This was the first fast-food price war and one of the brand’s first innovations.

Nathan’s also introduced the food industry to purifying the cooking oil, refrigeration and cleanliness as well as “chow mein on a bun” and beer after prohibition.

Loyalty, quality, business innovation…seems that I learned a lot from those “old” Brooklyn days. Let me know how your younger days influenced your career. I’m sure we will hear some interesting stories.