Changing it Up with Mixer-Dryer-Reactor Acquisition

 

filtration technology
Image source

Starting off 2019, I talked about push pushing ourselves personally and professionally to embrace change. Well, I’m a man of my word, and I’m proud to announce a big change in filtration technology at BHS-Sonthofen GmbH. We’re looking at 2019 as a year of growth, starting with the acquisition of the internationally active AVA-GmbH technology company.

AVA, based just outside of Munich, Germany, has 25+ years under its belt producing innovative machines and efficient processes for any industry. They tackle mixing, drying, reacting, granulating, sterilizing, evaporating, humidifying, and homogenizing to combine engineering expertise and project management know-how to provide “tailor-made solutions from a single source.”

AVA’s product portfolio is a perfect fit with BHS. Having already cooperated with them on joint projects in the past, we can be sure that our company is only strengthened by this move.

In addressing the sale, Dennis Kemmann, Managing Director of BHS-Sonthofen GmbH was enthusiastic about the opportunity to combine our products to have an “even more comprehensive offering in all of our chemical, pharmaceutical and other markets.” 

Expanding Process Filtration Technology Technologies

BHS’s latest newsletter looks at the pairing in more particular applications. You can read more about selecting AVA Vertical or Horizontal Mixer-Dryers for Batch of or Continuous Operations. The goal is a streamlined approach handling as many processes as possible in one unit to curtail investment and process costs. 

Three of AVA’s multipurpose process machines are presented as possibilities to cover the vast majority of the application spectrum of the powder and granule processing industry:

  • AVA Vertical mixer-dryers for batch operation
  • AVA Horizontal mixer-dryers for batch operation
  • AVA Horizontal mixer-dryers for continuous operation

The newsletter also mentions the AVA test center in Germany, which allows customers to scale up from 15 – 90 liter batch mixer-dryer to full scale batch and continuous operations with full scale-up reports and drying curves issued after testing. The US test center in Charlotte, North Carolina will be completed in 4Q, 2019.

Ultimately, the AVA acquisition is good news for current and prospective clients. This change means more innovative process engineering solutions as well as an expanded team to support our customers. The combination of BHS and AVA systems will provide important process benefits for turnkey projects for our clients worldwide. Let me know what we can do for you!

Busyness versus Business and Chemical Engineering Action

global_chemical-engineering-practice-chemical-formulas-future-blue-iStock_000006845534XSmall

My first blog of 2018 talked about the “speed” of the world and recommended slowing down and reflecting. Well, here’s some free chemical engineering advice as the year draws to a close: It’s important to take the time to review facts and data, analyze decisions, gather inspiration from many sources, and finally proceed with definite actions. Still, you’ll need to be ready to change, as things will come at you at “breakneck speed.”  

In my out-of-the-box way of thinking, I’m going to relate these ideas to the World Cup — Congratulations to France! During the big tournament of the big game in summer 2018, there was a lot of discussion about penalty kicks. 

Bradley Staats discussed them in the Wall Street Journal article “Don’t Simply Dive into Action:  Think.” He looked at various research sources and concluded that “the goalie’s best strategy may be not to move at all.”  At the same time, surveyed goalies have said that they would regret allowing a goal more if they stayed in the center (rather than diving left or right).  This impulse reflects an “action bias.” The idea that doing nothing could be the best strategy for goalies or businesses is seldom discussed.  

Action Bias in Chemical Engineering

chemical engineering advice
Image source

In the world of chemical engineering, when looking at a problem, we are all taught to gather more data, do more testing, investigate more research, get more sources, etc.  And yes, sometimes this is the best strategy when coming across a problem that is new to the plant or to the specific process.  However, there are many different thoughts on this topic from Sherlock Holmes who employs occasional silence and distancing for problem solving to Thomas Watson, longtime CEO of IBM who would tell his salespeople “the trouble with everyone is that we do not think enough…knowledge is the result of thought.”

So, what is the answer?  As we sit at our computers and study the data, we all debate with ourselves whether to take a short walk or brainstorm for 5 minutes.  As the title of the blog states, busyness does not lead to business or to learning.  So, as an engineer, I suggest the brainstorm approach and thinking.  For vendors and sales people too, the tendency is for action.  But, even for sales people, thinking and slowing down to develop the correct approach is critical to success.

My chemical engineering advice is to avoid acting just to show “action.” Instead, take some time to think.  We may have to change Notre Dame Football coach Frank Leahy’s quote to read instead: “when the going gets tough, the tough get thinking.”  Let me know your ideas.

6 Global Trends Driving Filtration and Separation Technology Innovation

filtration and separation

This guest blog by Molly Henry of the American Filtration and Separations Society (AFS), appeared on their site (with my editorial assistance). For those who missed the original, I thought it was information worth sharing again here (in edited form) regarding the global filtration market.

As our population grows and urbanizes, so does our need for clean energy, pure water, increased food supplies, advanced medical care, and improved digital devices and processing power. Filtration and separation suppliers, as an enabling technology to most industries, must continually evolve to increase capacity and improve filtration performance. This blog examines the trends necessitating innovation. 

Population growth will drive demand, which will require increased production and manufacturing efficiency for industrial products, foods and beverages, transportation, and infrastructure. All of which means a greater need for filtration and separation technology.

Rapid urbanization on a global scale requires new and improved infrastructure, including water, power, communications and transportation; all of which require filtration.

Disruptive digital technology changes have dramatically improved computer processing for several decades, and trends call for this to continue. As computer circuits have grown smaller and smaller while increasing in processing power, filtration and separation technologies have also become increasingly more sophisticated.

Natural resource scarcity and climate change will make it increasingly difficult to supply an ever-growing population with clean water. This will drive greater use of desalination technologies. Recycling and reusing of wastewater on a consumer, commercial and industrial scale will become the norm. Filtration and separation technology make all these processes possible.

Transformative advances in healthcare will allow people to live longer, healthier, and more productive lives. A part of this process will be advances in diagnostic and drug therapies, which utilize filtration and separation technologies. At the same time, a focus on a cleaner environment and all natural and pure consumables, will see more industries utilizing filtration and separation rather than chemical technologies to make products safe and pure.

The race to zero emissions and zero discharge for industrial manufacturing, public utilities, automotive and aerospace will be a technology challenge on many fronts. Filtration and separation are among the major enabling technologies for this purify, recycle, and reuse process.

Whatever role you play, keeping an eye on these megatrends will serve you and your constituents well in the quest for long-term growth and value creation in the global filtration market. 

 

Become a Filtration Tech Troubleshooting Expert

filtration tech troubleshooting
Image source

Recently I addressed the too-familiar telephone call that the “filtration system is not working.” When the call comes in — and so seldom during regular business hours —  filtration tech experts have to react quickly to solve the problem.

Now, the question is how do you avoid getting these types of calls in the first place?  Well, you can turn off your cell phone, but maybe isn’t the best idea.  Instead, the better approach is proactive troubleshooting. 

Proactive Filtration Tech Troubleshooting Ideas

As you know, I’m a big fan of Sherlock Holmes. The great sleuth talks about checklists and separating the consequential from the inconsequential facts. This systematic approach works perfectly for troubleshooting — take a systematic approach with a comprehensive set of questions and logic charts.  After all, we all know that most problems, maybe 90% or more, that arise with the filtration system have been experienced before.  

A different approach involves “walking around” or random analysis.  Sherlock and Dr. Watson are also very good at this. They see what’s not there to uncover the facts. This observation approach can help with the unique problems. I’ve written before also about the Japanese approach of “Genchi Genbutsu,” which further explains this option.

Becoming an Expert Troubleshooter

Becoming an Expert Troubleshooter, though, requires developing several “soft” skills over and above your technical expertise and great depth of knowledge in many areas. These characteristics include:

  • Critical thinking: Ask probing questions to everyone at the plant from operators, mechanics, to process and R&D engineers to encourage conversations
  • Excellent communication: Listen to the answers and ask the same questions in a different way or use the answers to formulate different questions and keep an open mind.
  • Empathy: Try to understand potential frustrations.
  • Motivational: Praise everyone who provided you with the answers, ideas, etc. to inspire the plant
  • Ability to teach: Look for teaching moments so problem-solving permeates through the organization.

In the future of work, we’re going to be looking more at talents in addition to expertise. Cultivate your troubleshooting chops. Keep walking around and keep learning. In the meantime, let me know your area of expertise; maybe I can use your skills.

My Thoughts on Filtration Separation Trends and Practices

 

filtration forecasting
Image source

I recently had the opportunity to share my ideas on filtration separation trends and practices with World of Chemicals magazine. My favorite part may have been the headline, “Aging with perfection in filtration technology.” I like to think they were talking about me — ha ha!

filtration forecasting
Image source

In the meantime, I thought I’d excerpt some of the thoughts I shared in that interview.

Talking about global trends in the filtration separation equipment market, I noted, as the world’s population grows, there is a need for cleaner energy, improved water & food and advanced health care….Advances in healthcare and pharmaceuticals and nutraceuticals [are also allowing] people to live longer, healthier and more productive lives.

This means, “filtration and separation technology suppliers must continually improve their products to meet these needs. The trends in the filtration market space are two-fold: moving towards continuous filtration (which is more efficient) as well as moving towards finer and finer particle size removal.”

I suspect we’ll see high demand for filtration separation products in “pharmaceuticals with smaller batches, cleanability and multipurpose operations.” Also, “for increased food supply, we see growth in the agrochemical market including fertilizers, pesticides, herbicides and insecticides.” Plus, “cleaner water is driving the specialty chemicals for resins and catalysts.”

As chemical and pharmaceutical manufacturers adapt to more multipurpose facilities, filtration and separation equipment must be cleanable and avoid cross-contamination between products. Batch sizes are also smaller, and we demand for finer filtration and separation to 0.5 microns as well as automatic operation for safety, efficiency etc.

Automation trends & more

Automation technology is one of the most important aspects for customers today. It is critical for filtration and separation products for preventative maintenance, efficient operation, mechanical troubleshooting and process analysis. Applying improved automation technology greatly reduces the energy usage and improves accuracy and precision to the overall process.

Automation also provides for optimum operations, time monitoring systems, report generation and recipe management.

We’re also going to have to incorporate R&D to meet market demands. At BHS, we’re working with clients to combine technologies for full turnkey responsibility to minimize lifecycle costs and reduce operating costs. So, overall, we are focused on innovation, automation, continuous processing, cleanability and overall reliability to 99 percent uptime. We strive to provide complete process solutions with spare parts, service and continually to improve the client’s operation.

This requires testing — of course. “Testing provides the collaboration with the client to provide innovative and cost-effective process solutions.”

At the same time, one big challenge in our market is the need for speed. Speed of innovation is impacting our clients who are developing new processes very quickly using micro-reactors, new chemistry, and new products.

The speed at which the filtration and separation suppliers must operate to meet the clients is even faster. Successful companies must fulfill this “speed” objective without sacrificing any core values of safety, efficiency, quality, and service.

Troubleshooting When the Filtration System is Not Working

 

filtration system
Image source

These are five dreaded words that no engineer wants to hear on a Saturday night or Sunday morning: “The filtration system is not working.” Of course, we never seem to get this call at 10 in the morning on a work day!

No matter the time of day, let’s not panic, take a deep breath and begin the analysis.  

There are normally three main areas that must be examined when you learn the filtration system is not working:

  1. The filter itself for mechanical reasons
  2. The equipment around the filter is not working
  3. The filter operational procedures are not correct.  

To fully understand the problem, it’s necessary to separate the symptoms from the causes. So, let’s examine each of these groups in more detail.

Troubleshooting Filter Problems

The first thing that should be checked is the filter itself. There could be a failure of the equipment mechanics such an internal components, seals, etc. Many of these issues will be described normally in the preventative maintenance section of the filter’s O & M manual. 

Second, keeping in mind, the filtration system is part of the entire process it’s important to examine the upstream and downstream equipment. For example, you might check:

  • Are the reactors performing correctly in terms of agitation, temperature control, etc. in order to produce the specified crystals?  
  • Are the precoat and body feed systems in tune for mixing, feeding, flow rates, solids loading, etc.?  
  • Are the valves and instruments operating correctly and reading the correct variables (calibrations), etc.?  

Next, take a look at the pumps that feed the slurry and washing liquids as well as the compressors the feed the gas streams for drying and cake discharge.  The pumps must produce the required pressure, flow rates, etc.  The compressors must also produce a certain gas flow at a specific pressure for a certain amount of time.  Are their interlocks in the control system or a control communication problem that are not being recognized that are causing the filter problem.  Finally, if flocculants and chemicals are being used, have these changed?  

Process Engineering Problems? 

The last place to look is the process or operational procedures. These could be responsible for the filtration problems.  For example, the particle size distribution may have changed, the amount of solids in the slurry may have changed, the cake compressibility may have changed, etc.  In terms of the operation, has the filtration pressure changed, timers changes, speed changed, etc.?  Finally, determine whether or not a process parameter has changed.  

Trouble shooting is not easy, but solving the problem brings a great sense of satisfaction. 

Let me know some of your troubleshooting horror stories! I’d love to share some in a future blog. Together, we can make it easier to handle the situation next time we hear those five dreaded words.  

filtration system
Image source

Selecting and Designing Combination Filtration for Solid-Liquid Separation

SLS equipment
Photo by uptownguydenver on Foter.com / CC BY-NC-ND

Filtration experts, over the years, have discussed combination filtration and debated its definition.

  • In the realm of cartridge filtration, simply defined, a combination filter is one that does at least one other processing job at the same time as filtering a suspension.  For example, this could be carbon canister which removes both suspended and dissolved components.
  • In water applications, a combination filter removes bacteria, sediment, chlorine taste and odor, and scale.
  • In lubrication oil filtration, combination filtration refers to full-flow and by-pass flow filtration.
  • For small scale process filtration, combination filtration is installing bag and cartridge filtration systems in series.

There is, however, a new definition of combination filtration that transcends the standard approach and will assist process engineers with trouble shooting and idea-generation.  The approach relies upon the slurry analysis and testing to uncover the “process symptom” and then develop a process solution called “combination mechanical slurry conditioning and filtration.”

Filtration Technology in Combination

There are, without doubt, there is a lot of SLS equipment already existing in the marketplace that can be applied in combination, including the use of chemicals such as flocculants and coagulants.  However, from a practical viewpoint, let me review general operating conditions at chemical plants and illustrate creative idea-generation when examining a process problem.

In this first case, we have a high solids slurry with a wide particle size distribution.  What should you do?  My idea is to provide filtration for the slurry with a continuous technology and let the fines bleed through; capture theses fines with clarification.  Yes, more filtration but a much more reliable system.

 

filtration procedure

This new definition of combination filtration will provide process engineers a framework for idea generation when analyzing an operating bottleneck.  Complete my application data sheets for new and existing application data for filtration for solid-liquid separation. Let us start the process of finding the right SLS equipment for your business.

Selecting the Right Types of Filtration for Solid-Liquid Separation

types of filtration
Photo by Picturepest on Foter.com / CC BY

Filtration selection, if we think back to Sherlock Holmes, means “not jumping to conclusions.”  There is no “one size fits all” process solution.  Selecting a filtration technology requires a systems approach incorporated with other solids processing such as reactors, dryers, solids handling, etc.  You could gain an objective overview by filling out an application data sheet (like the ones I use for new or existing applications) that can help identify what’s involved in the specific solid-liquid separation.

Ultimately, the process has three components:

  • Material properties, which I’ll describe in more detail below
  • Separation performance objectives including, for example, filtrate quality (conductivity or residual solids) cake dryness, flowability of the cake, crystal breakage /fines generation and conditioning of the cake for further processing
  • Mechanical properties — The specification must be clear in terms of material of construction, temperatures/pressures, FDA validation, cleaning procedures, manufacturing codes, etc.  Each equipment type will have its own mechanical specifications that must be satisfied.

These three considerations are combined and ranked choices are then evaluated for operational, economic, and plant (internal and external) objectives.

Finding the Best Filtration Procedure

Your examination of material properties considers the solids and the liquids.  For solids, the engineer needs to know the total suspended solids (TSS) and solids concentration, particle size distribution (PSD), and particle shape.  The PSD should be based upon particle counts at different sizes rather than by weight or volume.

The particle shapes can vary:  spheres, rounded, angular, flaky, or thinly-flaked are among the examples.  Shape will influence the filtration rates for the process and also impact the PSD due to the nature of particle size measuring equipment.

Knowing this, the solid-liquid filtration system further requires a systems approach to incorporate other solids processing such as reactors, dryers, and solids handling, etc.  The full scope should include the actual upstream and downstream.

Consider this typical example of a chemical process including all of the associated processing steps:

  • Chemical synthesis and Crystallization:
    • Types of catalysts
    • Solvents
    • Continuous or batch
    • Temperature
    • Flashing
    • Inerting
  • Filtration
  • Drying
  • Dissolution
  • Hydrogenation
  • Secondary crystallization
  • Filtration
  • Final drying
  • Solids and slurry handling in all steps

General Guidelines to Selection

So, the question is where to begin to make the preliminary filtration technology choices for solid-liquid separation?  Here are some general guidelines for selecting among types of filtration:

Filter Press Continuous Vacuum and Pressure Nutsche  Filter & Filter-Dryer Clarification
Solid content of the suspension (%) 5 to 30 10 to 40 10 – 40 < 5
Maximum Pressure Difference 100 bar -1 to 6 bar 6 bar 10 bar
Cake Thickness (mm) 5 to 50 5 to 150 5 to 300 20
Average Particle Size 1 to 100 micron 1 to 100 micron 5 to 200 micron 1 to 50 micron
Type of Operation Batch Continuous Batch Batch
Comments Good for slow filtration and can produce dry filter cakes; Excellent cake washing and pre-drying Good when reactor batch times equal to total cycle times Disposable for low flows; candle and plate filters for large flows

Let me know if this is helpful to you.  My idea is to do a series of types of filtration systems for solid-liquid separation for various applications.  What is troubling you?

Reflecting on Speed, and Time to Prosper

process engineering

Welcome to 2018.

What do “Star Wars — The Force Awakens,” the New England Patriots and the Kansas City Royals and this blog all have in common?  As you might have guessed, they all had special events in 2015.  Yes, my blog has been up and running now for over three years! Plus, 2015 is when Star Wars debuted and both New England and Kansas City won their respective championships.

Before thinking about 2018, and this blog’s fourth year, I wanted to take a moment to reflect on the year 2017.  What intrigues me is what we know now that we did not know in January 2017, one year ago. There were many surprises ranging from politics, world events, social issues, to business and career, sports, food and entertainment.  In the comments below, let’s start a conversation about what you learned in 2017.

Reflecting on 2017 and 2018 Success

Of course, I have many ideas about what I learned last year. Yet, in boiling it down to one theme, I would focus on “speed.”  In all of our endeavors, the speed of information flow, decision making, world events, politics, etc., is increasing dramatically.  From a business point of view, technology, marketplace, competition, manufacturing, etc. are all changing at breakneck speed.  At BHS, for example, we addressed a marketplace request to incorporate “clean-in-place” (CIP) systems which led to changes with our rubber belt filter.

At the same time, if speed is what characterized 2017, for 2018 I’ve decided it’s time to slow down and reflect. For one thing, I have improved my yoga practice. In other areas of my day, I’m taking the time needed to review facts and data, analyze decisions, gather inspiration from many sources, and finally proceed with definite actions. Of course, I still need to be ready to change, as things will continue coming at “breakneck speed,” but I am optimistic about success.

For 2018, I’ve already started thinking with excitement about what posts my readers want to read.  There will be more blogs about “problem-solving” with topics on filtration, particle technologies, drying, and solids handling.  Yet I always invite you to make suggestions! In fact, I’d welcome guest blogger contributions to improve the chemical process industry.  Finally, read often, thick critically, and let’s all prosper in 2018.

The Engineer in the Wild

Business Week recently featured an excellent feature detailing the tragedy of Kate Matrosova. But what does that have to do with filtration technology?

Well, let’s consider her story first. The 32-year-old trader with a love for adventure set out on an epic solo hike across New Hampshire’s mountains and encountered “the most hellish weather seen in many seasons.”

filtration technology
Photo credit: weesam2010 / Source / CC BY-NC-SA

Friends remember her as a brave woman with a power within her who, although equipped, was beaten by the elements. “It was a contest she could not win,” we’re told. It’s too bad. She sounded like a woman with a great deal of promise and a strong inner drive.

Yet, what does this sad end have to do with solid-liquid filtration. Treating her tragedy as a cautionary tale, the article put me in mind of certain advice in my book.

  • We can’t be so eager to accomplish something that we fail to follow proper procedures.
  • Don’t rely on experience and intuition alone.
  • Safety matters, so prepare for the unexpected.

As Sherlock Holmes himself might note, there’s no replacement for combining experience with careful planning. I put this view to work daily in filtration technology, but it’s widely applicable. Let me know what you think!