Busyness versus Business and Chemical Engineering Action

global_chemical-engineering-practice-chemical-formulas-future-blue-iStock_000006845534XSmall

My first blog of 2018 talked about the “speed” of the world and recommended slowing down and reflecting. Well, here’s some free chemical engineering advice as the year draws to a close: It’s important to take the time to review facts and data, analyze decisions, gather inspiration from many sources, and finally proceed with definite actions. Still, you’ll need to be ready to change, as things will come at you at “breakneck speed.”  

In my out-of-the-box way of thinking, I’m going to relate these ideas to the World Cup — Congratulations to France! During the big tournament of the big game in summer 2018, there was a lot of discussion about penalty kicks. 

Bradley Staats discussed them in the Wall Street Journal article “Don’t Simply Dive into Action:  Think.” He looked at various research sources and concluded that “the goalie’s best strategy may be not to move at all.”  At the same time, surveyed goalies have said that they would regret allowing a goal more if they stayed in the center (rather than diving left or right).  This impulse reflects an “action bias.” The idea that doing nothing could be the best strategy for goalies or businesses is seldom discussed.  

Action Bias in Chemical Engineering

chemical engineering advice
Image source

In the world of chemical engineering, when looking at a problem, we are all taught to gather more data, do more testing, investigate more research, get more sources, etc.  And yes, sometimes this is the best strategy when coming across a problem that is new to the plant or to the specific process.  However, there are many different thoughts on this topic from Sherlock Holmes who employs occasional silence and distancing for problem solving to Thomas Watson, longtime CEO of IBM who would tell his salespeople “the trouble with everyone is that we do not think enough…knowledge is the result of thought.”

So, what is the answer?  As we sit at our computers and study the data, we all debate with ourselves whether to take a short walk or brainstorm for 5 minutes.  As the title of the blog states, busyness does not lead to business or to learning.  So, as an engineer, I suggest the brainstorm approach and thinking.  For vendors and sales people too, the tendency is for action.  But, even for sales people, thinking and slowing down to develop the correct approach is critical to success.

My chemical engineering advice is to avoid acting just to show “action.” Instead, take some time to think.  We may have to change Notre Dame Football coach Frank Leahy’s quote to read instead: “when the going gets tough, the tough get thinking.”  Let me know your ideas.

Real World Examples of Particle and Cake Formation Influences

process engineering
Image source

Process engineers might love it if all of the filtration technology solutions they developed ran flawlessly, at all times, under all conditions. But, this isn’t realistic. Something might go wrong with the filtration mechanism itself. A change in the environment — upstream or downstream — could cause problems with particle or cake formation. Even the smallest shift in the operation process or procedure can prompt the dreaded phone call to the engineer: “the filtration system isn’t working.”

In my work at BHS-Sonthofen Inc., I’ve seen filtration technology impacted by particles and cake formation that weren’t predicted in designing the solid-liquid separation solutions. 

Particle Sizes Changes from Lab to Production

The existing process was a batch crystallizer operating at 0 – 5 degrees C with 13- 20% solids  to a batch vacuum filtration operation. The filter was designed for a five inch cake height. The objective of the process optimization was to move to a continuous process of continuous reaction to continuous filtration, cake washing and drying.

The BHS rotary pressure filter was installed for continuous pressure filtration.  What did the client find out?  Only the particle size has changed from lab to production!  As you can imagine, this was not a small change.

cake formation

Going back to the drawing board and testing processes again, we made the following changes to the filtration system:  new filter media, increased cloth wash pressure with a new solvent and finally a reduced cake thickness.  Yes, this trouble shooting required about 6 months of work, but problem solved!

Troubleshooting Filtration Technology

In another instance with grey water treatment units, a clarification application for the purge water treatment unit (PWTU) was installed and started up for a year of successful running. Then, inexplicably, the performance changed and the filter began plugging quickly during cycles.

cake formation

 

Troubleshooting the system we had to re-examine the filtration system under different conditions:

  • Clarifier overflow with no coagulant / no flocculants 
  • Clarifier overflow with only coagulant / no flocculants
  • Clarifier overflow with both coagulant and flocculants
  • Clarifier overflow with only flocculants / no coagulant

Taking a holistic approach to the system, we were able to determine chemical changes caused the larger particles to settle out. Only the smaller particles were reaching the filtration system, which was blinding the filter media.  By eliminating the flocculants  and reducing coagulant usage (even though this was better for the client, and not necessarily BHS as the chemical supplier, we were able to improve filtration rates and once again offer a consistent PSD.

Ultimately, with the right approach to troubleshooting, and by embracing the idea that we do on a daily basis is an art coupled with science, we can enjoy a strong sense of satisfaction when we get that filtration technology up and running again.

This blog is based on a presentation I made to the  8th World Congress on Particle Technology. View the presentation slides in full!